Solenoid valves series 3000

- 10 mm size
- Nominal flow rate up to 200 NI/min
- Available sub-base mounted or with M5 threaded ports
- The ability to replace valves without
disconnecting the pipework
- Available with a wide range of serial system protocols
- Wide range of accessories
- Stand-alone or manifold
mounted versions
- Suitable for use with pressure or vacuum

Versatility and maximum reliability: With these prerogatives in mind, new products are being developed dedicated to control in a smarter context. Having the flexibility to be configured within control systems to provide optimal management through a constant interface and communication with the machines control system. The Pneumax 3000 series solenoid valve range has been developed with this in mind and has been developed to suit both stand-alone and manifold mounted applications.

Both stand alone and manifold mounted versions are available in the most commonly used types, capable of working with positive pressures up to 10 Bar or vacuum. The valves have aluminum bodies with integrated electrical connections, manual override and an LED that indicates when the valve is actuated. The Pneumax 3000 series is another addition to the extensive range of solenoid valve systems designed for applications from assembly to automotive.

Construction characteristics	Aluminium
Body	Technopolymer
Operators	Aluminium
Spool	NBR
Seals	NBR
Piston seals	AISI 302 stainless steel
Springs	Aluminium
Pistons	24 VDC $\pm 10 \%$
Operational characteristics	$1.3 W$ nominal in the STAND ALONE version (M8 version 1.3W with energy saving)
Voltage	$1.3 W$ nominal in energy saving mode in the MANIFOLD version.
Pilot power consumption	from vacuum to 10 bar max.
Valve working pressure [1]	from 2,5 to 7 bar max.
Pilot working pressure [12-14]	from $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Operating temperature	Filtered air. No lubrication needed, if applied it shall be continuous
Fluid	

Uక̄ษัท Wลูเกค จำกัก
845/3-4 หเู่ 3 ก.ınwารักษ์ ต.Inwารักษ์ อ.เบือง จ.สเฺnsปsาการ 10270
FLU-TECH CO.,LTD

STAND ALONE solenoid valves version

General

The 10 mm solenoid valves range with a flow of $200 \mathrm{NI} / \mathrm{min}$, is available in STAND ALONE self-feeding or external feeding versions and realised with point to point connections in three different types of interface: with miniature connector type H , with 300 mm leads and with an M8 connector with an integrated snap-on fitting.

Main characteristics

10 mm size thick.
Multi-position sub-bases in different lengths.

Functions

S.V. 5/2 Monostable Solenoid-Spring
S.V. $5 / 2$ Monostable Solenoid-Differential (only self feeding)
S.V. 5/2 Bistable Solenoid-Solenoid
S.V. 5/3 C.C. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.C. ($=5 / 3$ O.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.O. (=5/3 P.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.O. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.C. Solenoid-Solenoid

Solenoid valve ordering code

Example in the table : 3115.52.00.39.02 : Solenoid valve $5 / 2$ solenoid-spring self-feeding, $\mathrm{H} 90^{\circ}$ connector

Configurator

Number of collector positions
02: 2 positions collector
03: 3 positions collector
04: 4 positions collector
05: 5 positions collector
06: 6 positions collector
07: 7 positions collector
08: 8 positions collector
09: 9 positions collector
10: 10 positions collector

Valve type

A: Solenoid valve $5 / 2$ Solenoid-Spring
B: Solenoid valve $5 / 2$ Solenoid-Differential (only self feeding)
C: Solenoid valve $5 / 2$ Solenoid-Solenoid
E: Solenoid valve 5/3 C.C. Solenoid-Solenoid
F: Solenoid valve $2 \times 3 / 2$ N.C.-N.C. ($=5 / 3$ O.C.) Solenoid-Solenoid
G: Solenoid valve $2 \times 3 / 2$ N.O.-N.O. (=5/3 P.C.) Solenoid-Solenoid
H: Solenoid valve $2 \times 3 / 2$ N.C.-N.O. Solenoid-Solenoid
I: Solenoid valve $2 \times 3 / 2$ N.O.-N.C. Solenoid-Solenoid

```
Power supply
2: External feeding
3: Self feeding
```

| Connector type |
| :--- | :--- |
| H: H 90° connector |
| C: 300 mm cables |
| M: M8 SPEED UP connector |

Voltage
1: 24 VDC
Connections
5: M5

Accessories (optional)
T: Free valve space plug
Accessories (optional)
OXO: Diaphragm plug on pipe 1
OOY: Diaphragm plug on pipe 3
ZOO: Diaphragm plug on pipe 5
OXY: Diaphragm plugs on pipes 1 and 3
ZXO: Diaphragm plugs on pipes 5 and 1
ZOY: Diaphragm plugs on pipes 5 and 3
ZXY: Diaphragm plugs on pipes 5,1 and 3

Example in the table: 3104-C2H15-T-0X0-A3H15-F3M15

Four-position manifold composed of:

- Solenoid valve $5 / 2$ solenoid-solenoid external feeding, $\mathrm{H} 90^{\circ}$ connector, 24 VDC
- Free valve space plug
- Diaphragm plug on pipe 1
- Solenoid valve $5 / 2$ solenoid-spring self-feeding, $\mathrm{H} 90^{\circ}$ connector, 24 VDC
- Solenoid valve $2 \times 3 / 2$ N.C.-N.C. (=5/3 O.C.) solenoid-solenoid, M8 SPEED UP connector, 24 VDC

Solenoid-Spring / Solenoid-Differentia

SHORT FUNCTION CODE "A" (39)
SHORT FUNCTION CODE "B" (36)

(02)

Coding: 3115.52.00. ©.C

F	FUNCTION
	36=Solenoid-Differential
	39=Solenoid-Spring
C	CONNECTIONS
	02 $=\mathrm{H} 90^{\circ}$ connector, 24 VDC
	$32=300 \mathrm{~mm}$ cable, 24 VDC
	82=M8 SPEED UP connector 24VDC

(F) $36=$ Solenoid-Differential $39=$ Solenoid-Spring $02=\mathrm{H} \mathrm{90}{ }^{\circ}$ connector, 24 VDC
$32=300 \mathrm{~mm}$ cable, 24 VDC 24VDC

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"					
Code	Fluid	Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Piloting pressure (bar)	Temperature ${ }^{\circ} \mathrm{C}$	Weight (g)
3115.52.00.39.© Solenoid-Spring	Filtered air. No lubrication needed, if applied it shall be continuous	160	10	20	2,5-7	$-5-+50$	49
3115.52.00.36. © Solenoid-Differential				15			

Solenoid - Solenoid

(02)

Coding: 3115.52.00.35.

CONNECTIONS
02=H 90° connector, 24 VDC
$32=300 \mathrm{~mm}$ cable, 24 VDC 82=M8 SPEED UP connector 24VDC

SHORT FUNCTION CODE "C"
L12 $=$ Manual over ride - Side 12

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"					
Code	Fluid	Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Piloting pressure (bar)	Temperature ${ }^{\circ} \mathrm{C}$	Weight (g)
3115.52.00.35.© Solenoid-Differential	Filtered air. No lubrication needed, if applied it shall be continuous	160	10	20	2,5-7	$-5-+50$	59

Solenoid - Solenoid (Closed centres)
\qquad
$32=300 \mathrm{~mm}$ cable, 24 VDC 24 VDC
(02)

Coding: 3115.53.31.35.C

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"					
Code	Fluid	Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	$\begin{gathered} \text { Piloting pressure } \\ \text { (bar) } \end{gathered}$	Temperature ${ }^{\circ} \mathrm{C}$	Weight (g)
3115.53.31.35.© Solenoid-Solenoid (Closed centres)	Filtered air. No lubrication needed, if applied it shall be continuous	150	10	20	2,5-7	$-5-+50$	59

Solenoid - Solenoid $2 \times 3 / 2$

Operational characteristics

$\mathrm{L} 12=$ Manual over ride - Side 12
$\mathrm{~L} 14=$ Manual over ride - Side 14

"Shifing time of pneumatic cirectional control valves or moving parts, logic devices
were measured in accordance to ISO $12238: 2001$ "

Code	Fluid	Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	$\underset{(\mathrm{bar})}{\text { Piloting pressure }}$ (bar)	Temperature ${ }^{\circ} \mathrm{C}$	Weight (g)
3115.62.44.35.© NC-NC (5/3 Open centres)	Filtered air. No lubrication needed, if applied it shall be continuous	150	10	15	2,5-7	$-5-+50$	59,4
3115.62.55.35.© NO-NO ($5 / 3$ Pressured centres)							
$\begin{aligned} & 3115.62 .45 .35 . \mathrm{O} \\ & \text { NC-NO } \end{aligned}$							
$\begin{gathered} 3115.62 .54 .35 .0 \\ \text { NO-NC } \\ \hline \end{gathered}$							

(02)

(32)

Coding: 3115.52.00.29.©

$\mathrm{L} 12=$ Manual over ride - Side 12
$\mathrm{~L} 14=$ Manual over ride - Side 14

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta p=1(\mathrm{~N} / / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	Temperature ${ }^{\circ} \mathrm{C}$	Weight (g)
3115.52.00.29.© Solenoid-Spring	Filtered air. No lubrication needed, if applied it shall be continuous	160	10	20	From vacuum to 10	2,5-7	$-5-+50$	49

Solenoid - Solenoid

Coding: 3115.52.00.25.C
CONNECTIONS
$02=\mathrm{H} 90^{\circ}$ connector, 24 VDC
$32=300 \mathrm{~mm}$ cable, 24 VDC 82=M8 SPEED UP connector 24VDC

$\mathrm{L} 12=$ Manual over ride - Side 12

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	$\begin{array}{\|c\|} \hline \text { Temperature } \\ { }^{\circ} \mathrm{C} \\ \hline \end{array}$	Weight (g)
3115.52.00.25.C Solenoid-Solenoid	Filtered air. No lubrication needed, if applied it shall be continuous	160	10	10	From vacuum to 10	2,5-7	$-5-+50$	59

Solenoid - Solenoid 5/3 (Closed centres)

Coding: 3115.53.31.25.C

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	$\begin{gathered} \text { Response time according to } \\ \text { ISO 12238, deactivation time (ms) } \end{gathered}$	Working pressure (bar)	Piloting pressure (bar)	$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Weight (g)
3115.53.31.25.© Solenoid-Solenoid $5 / 3$ (Closed centres)	Filtered air. No lubrication needed, if applied it shall be continuous	150	10	20	From vacuum to 10	2,5-7	$-5-+50$	59

Solenoid - Solenoid $2 \times 3 / 2$

(32)

SHORT FUNCTION CODE:
NC-NC (5/3 Open centres)="F"
NO-NO ($5 / 3$ Pressured centres) $=$ " G "
NC-NO $=$ " ${ }^{\prime \prime}$ "
NO-NC="

Operational characteristics
$\mathrm{L} 12=$ Manual over ride - Side 12

 ayigher

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	Temperature ${ }^{\circ} \mathrm{C}$	Weight (g)
3115.62.44.25.C NC-NC (5/3 Open centres)	Filtered air. No lubrication needed, if applied it shall be continuous	150	10	15	From vacuum to 10	$\begin{gathered} \geq 3+ \\ \text { (02x Inlet press.) } \end{gathered}$	$-5-+50$	59,4
3115.62.55.25.C NO-NO (5/3 Pressured centres)								
$\begin{gathered} 3115.62 .45 .25 . \mathrm{C} \\ \text { NC-NO } \\ \hline \end{gathered}$								
$\begin{gathered} 3115.62 .54 .25 . \mathrm{C} \\ \text { NO-NC } \end{gathered}$								

Manifold

AIR DISTRIBUTION $\quad \rightarrow$

Assembling kit

Weight 2 g

Closing plate
Coding: 3115.00
(2) at

Diaphragm plug
Coding: 3130.17

Solenoid valve description

DIN rail fixing

Supply ports and maximum possible size according to valves used

Instable function
Push to actuate
(when released it moves back to the original position)

Note: it is strongly suggested to replace the original position after using
Solenoid valves installation

Max. torque moment: $0,2 \mathrm{Nm}$

MANIFOLD version

The range of solenoid valves, dedicated to the assembly sector in pre-configured manifold, is available in multipolar and serial versions, thanks to a vast choice of connectors and analogue and digital input and output accessories. The compact and clean design of both the valve body and the manifold, each one produced in aluminium, allows their use in applications requiring space optimisation and weight reduction without sacrificing the reliability and the characteristics of aluminium. The multipolar version is available in three different types of connections:

- SUB-D 25 poles equipped with 24 outputs and configurable in different lengths up to manifolds with a maximum of 12 bistable valve positions
- SUB-D 37 poles equipped with 32 outputs and configurable in different lengths up to manifolds with a maximum of 16 bistable valve positions
- SUB-D 25 poles HD (44 poles) equipped with 40 outputs and configurable in different lengths up to manifolds with a maximum of 20 bistable valve positions
Every one of these options covers the wide range of application requirements and provides electronic management by default capable of energy saving on individual coils and managing PNP and NPN connections automatically without any difference in installation for the end user.
Precisely in order to guarantee maximum versatility in integration in different machines and applications, the 3000 series valves in the serial version are designed to interface with all the main communication protocols: CANopen ${ }^{\circledR}$, EtherCAT® ${ }^{\circledR}$, PROFINET IO RT/IRT, EtherNet/IP, Powerlink, PROFIBUS DP and IO-Link.
Each manifold has also been thought out in order to be extremely flexible in the management or addition of further outputs through the use of a sub-base system that expands the main manifold.
This system of sub-bases can be connected through the use of a specific kit of connecting pins which can be repeated modularly until reaching the maximum number of outputs managed by the serial protocol used.
Taking advantage of the expansion of the output signals it is possible to connect other components to manage, for example, proportional pressure regulation or to control other solenoid valves.
With the same system it is also possible to connect a series of modules to the main manifold dedicated to the management of input signals up to the maximum number of inputs manageable by the specific serial node used.
In fact, input modules with different interfaces and different technologies have been provided, that is: modules with eight digital inputs with M8 or M12 connection or; analogue or voltage input modules with M8 connection interface.
The strong point of this system is the possibility to configure the series of input and output modules freely giving the advantage of installation flexibility.

Main characteristics

10 mm size thick.
Multi-position sub-bases in different lengths.
Integrated and optimized electrical connection as standard

Functions

S.V. Monostable Solenoid-Spring
S.V. Monostable Solenoid-Differential
S.V. 5/2 Bistable Solenoid-Solenoid
S.V. 5/3 C.C. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.C. ($=5 / 3$ O.C.) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.O. ($=5 / 3$ P.C) Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.C.-N.O. Solenoid-Solenoid
S.V. $2 \times 3 / 2$ N.O.-N.C. Solenoid-Solenoid

Configurator

Configuration examples

Example shown : 31EMP3CCCCAA
Manifold with external feeding, multipolar; 37 poles and solenoid valves.

Example shown : 31EN4CCCXYZCAA
Manifold with external feeding, serial module, solenoid valves and diaphragm plugs.

Example shown : 31EC4D8M12CBTXYZAIWCCXYZCCCCCCT
Manifold with external feeding, serial module, M8 input module, M12 output module; solenoid valves, multi-position diaphragm plugs, additional power supply module.

Solenoid - Spring / Solenoid - Differential

SHORT FUNCTION CODE "A" (39) SHORT FUNCTION CODE "B" (36)

Coding: 3141.52.00. F.C

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Weight (g)
3141.52.00.39.© Solenoid-Spring								
3141.52.00.36.C Solenoid-Differential	needed, if applied it shall be continuous	200	10	20	From vacuum to 10	2,5-7	$-5-+50$	55,7

Solenoid - Solenoid

Coding: 3141.52.00.35.C

SHORT FUNCTION CODE "C"

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	$\begin{array}{\|c\|} \hline \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{array}$	Weight (g)
3141.52.00.35.© Solenoid-Solenoid	Filtered air. No lubrication needed, if applied it shall be continuous	200	10	10	From vacuum to 10	2,5-7	$-5-+50$	55,7

SHORT FUNCTION CODE "E"

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$	Response time according to ISO 12238, activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	$\begin{array}{\|c} \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{array}$	Weight (g)
3141.53.31.35.© Solenoid-Solenoid $5 / 3$ (Closed centres)	Filtered air. No lubrication needed, if applied it shall be continuous	170	10	20	From vacuum to 10	2,5-7	$-5-+50$	60,3

Solenoid - Solenoid 2x3/2

Coding: 3141.62.F.35.C

2

Operational characteristics		"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001"						
Code	Fluid	Flow rate at 6 bar with $\Delta p=1(\mathrm{NI} / \mathrm{min})$	Response time according to ISO 12238 , activation time (ms)	Response time according to ISO 12238, deactivation time (ms)	Working pressure (bar)	Piloting pressure (bar)	$\begin{array}{\|c} \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{array}$	Weight (g)
3141.62.44.35.© NC-NC (5/3 Open centres)	Filtered air. No lubrication needed, if applied it shall be continuous	170	10	15	From vacuum to 10	$\begin{gathered} \geq 3+ \\ \text { (02x Inlet press.) } \end{gathered}$	$-5-+50$	60,7
$\begin{gathered} 3141.62 .45 .35 .0 \\ \text { NC-NO } \\ \hline \end{gathered}$								
$\begin{gathered} 3141.62 .54 .35 .0 \\ \text { NO-NC } \\ \hline \end{gathered}$								

Multipoint module

Operational characteristics			
Code	$3140.00 .25 \mathrm{P}(25$ poles $)$	$3140.00 .37 \mathrm{P}(37$ poles $)$	3140.00.44P (44 poles)
Temperature ${ }^{\circ} \mathrm{C}$	47,4	$-5-+50$	
Weight (g)	51,3	49,1	

Codifica: 3140.00.C
ELECRICAL CONNECTIONS $25 \mathrm{P}=$ Connector 25 poles $37 \mathrm{P}=$ Connector 37 poles $44 \mathrm{P}=$ Connector 44 poles

DIN rail adapter

Coding: 2300.16

Weight 12 g

(O)

Free valve space plug

Inlet/Exhaust module

Int

Coding: 3140.00

Weight 21 g

Weight 7 g

Coding: 3140.10

Weight 50 g

Coding: 3130.17

Diaphragm plug installation

Cable complete with connector, 25 poles, IP65

Coding: 2300.25.L.C

Cable complete with connector 37 poles, IP65

Cable complete with connector 44 poles, IP65

Coding: 2300.44.․․C

Solenoid valves manifold

Manifold

Coding: 3145.V.P

(V)	VERSION		
	02 = External feeding		
	12= Self feeding		
P	POSITIONS	L1	L2
	04=4 Positions (weight 432 g)	103	94
	06=6 Positions (weight 518 g)	124	115
	$\begin{aligned} 08= & 8 \text { Positions } \\ & \text { (weight } 604 \mathrm{~g} \text {) } \end{aligned}$	145	136
	$10=10$ Positions (weight 690 g)	166	157
	$\begin{aligned} 12= & 12 \text { Positions } \\ & \text { (weight } 776 \mathrm{~g} \text {) } \end{aligned}$	187	178
	16=16 Positions (weight 948 g)	229	220
	$\begin{aligned} 20= & 20 \text { Positions } \\ & \text { (weight } 1120 \mathrm{~g} \text {) } \end{aligned}$	271	262
	$\begin{aligned} 24= & 24 \text { Positions } \\ & \text { (weight } 1280 \mathrm{~g} \text {) } \end{aligned}$	313	304

Manifold with accessories

1 = Inlet port G1/8" 2 and $4=$ Outlet port M5 3 and $5=$ Exhaust port G1/8"

Coding: 3145. D.P.A

(v)	VERSION		
	$02=$ External feeding		
	12= Self feeding		
P	POSITIONS	L1	L2
	$\begin{array}{r} 04=4 \text { Positions } \\ \text { (weight } 432 \mathrm{~g} \text {) } \end{array}$	103	94
	$\begin{aligned} 06= & 6 \text { Positions } \\ & \text { (weight } 518 \mathrm{~g} \text {) } \end{aligned}$	124	115
	$\begin{aligned} 08= & 8 \text { Positions } \\ & \text { (weight } 604 \mathrm{~g} \text {) } \end{aligned}$	145	136
	$\begin{array}{r} \hline 10=10 \text { Positions } \\ \text { (weight } 690 \mathrm{~g} \text {) } \end{array}$	166	157
	$\begin{aligned} 12=12 \text { Positions } \\ \text { (weight } 776 \mathrm{~g} \text {) } \end{aligned}$	187	178
	$\begin{gathered} \hline 16=16 \text { Positions } \\ \text { (weight } 948 \mathrm{~g} \text {) } \end{gathered}$	229	220
	$\begin{gathered} 20=20 \text { Positions } \\ \quad \text { (weight } 1120 \mathrm{~g} \text {) } \end{gathered}$	271	262
	$\begin{aligned} 24= & 24 \text { Positions } \\ & \text { (weight } 1280 \mathrm{~g} \text {) } \end{aligned}$	313	304
(A)	ACCESSORIES		
	$01=1$ optional positio		
	02= 2 optional positio		
	04=4 optional positio		
	$08=8$ optional positio		
	$12=12$ optional pos		

Solenoid valve description
PILOT STATE IDENTIFICATION LED L12 (LED "ON" = IDENTIFIES ACTUATED PILOT PILOT STATE IDENTIFICATION LED L14 (LED "ON" = IDENTIFIES ACTUATED PILOT

From the top

DIN rail fixing

Supply ports and maximum possible size according to valves used

M5x0,8
Pilot exhaust port

UNI-ISO 228/1-G1/8"
Valve supply port
UNI-ISO 228/1-G1/8" Valve exhaust ports

Manual override actuation

Instable function:
Push to actuate
(when released it moves back to the original position)

Push and turn to get the bistable function

Max. torque moment: $0,2 \mathrm{Nm}$

Serial systems and multipoint system installation

Solenoid valves manifold

General - CANopen ${ }^{\circledR}$ slave modules

CANopen ${ }^{\circledR}$ node handles up to 64 inputs and outputs, both divided into 8 bytes. Output typologies include solenoid valves, digital outputs (e.g. 5130.08.M8) and analog outputs (e.g. 5130.2T.00). Connectable inputs typologies include digital inputs modules (e.g. $5230.08 . \mathrm{M} 8$), analog input modules (e.g. 5230.2 T.00), and Pt100 inputs modules (e.g. 5230.4P.02). Optional modules can be connected to the manifold in any order and configuration, provided that modules are installed starting from the node and optional position modules left to furthest end.
Electrical power must be supplied via circular M12 4 pins type A male connector. The separation between 24VDC supply of the node and 24VDC of the outputs allows to turn off outputs leaving the node and eventual inputs operational.
CANopen ${ }^{\circledR}$ network connection is achieved via two circular male-female M12 5 pins type A connectors connected in parallel; connectors pinout is compliant to CiA Draft Recommendation 303-1 (V. 1.3:30 December 2004).
Transmission speed and address are set via DIP-switch.
Internal termination resistance is on-board and can be enabled via DIP-switch as well.
There are two CANopen ${ }^{\circledR}$ node versions: they differ by number of outputs directly allocated to solenoid valve positions.
5530.64.32CO part number provides the first 32 out of 64 outputs, corresponding to less significant 4 bytes, are permanently allocated to solenoid valve positions, regardless how many they physically are and how many valves are installed. The remaining 32 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
5530.64.48CO part number provides the first 48 out of 64 outputs, corresponding to less significant 6 bytes, are permanently allocated to solenoid valve positions, regardless how many they physically are and how many valves are installed. The remaining 16 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
Two part-numbers have been provided to tailor configuration on your needs. 5530.64.48CO part number is recommended in case several solenoid valves must be handled, whilst ensuring room for future expansions. 5530.64 .32 CO part number is recommended in case increased flexibility is needed for digital outputs.

To better understand different possibilities offered during configuration, some examples follow.

Scheme / Overall dimensions and I/O layout

Technical characteristics

	Specifications	CiA Draft Standard Proposal 301 V 4.10 (15 August 2006)
	Case	Reinforced technopolymer
Power supply	Power supply connection	M12 4 P male connector (IEC 60947-5-2)
	Power supply voltage	+24 VDC +/- 10\%
	Node consumption (without inputs)	30 mA
	Power supply diagnosis	Green LED PWR / Green LED OUT
Network	Network connectors	2 M12 5 P connectors male-female type A (IEC 60947-5-2)
	Baud rate	10-20-50-125-250-500-800-1000 Kbit/s
	Addresses possible numbers	From 1 to 63
	Max. node in net	64 (slave + master)
	Bus maximum recommended length	100 m at $500 \mathrm{Kbit} / \mathrm{s}$
	Bus diagnosis	Green LED + red LED
	Configuration file	Available from our web site http://www.pneumaxspa.com
	IP Rating	IP65 when assembled
	Temperature range	From $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

General - PROFIBUS DP slave modules
PROFIBUS DP node handles up to 64 inputs and outputs, both divided into 8 bytes. Output typologies include solenoid valves, digital outputs (e.g. 5130.08.M8) and analog outputs (e.g. 5130.2T.00). Connectable inputs typologies include digital inputs modules (e.g. 5230.08.M8), analog input modules (e.g. 5230.2T.00), and Pt100 inputs modules (e.g. 5230.4P.02). Optional modules can be connected to the manifold in any order and configuration, provided that modules are installed starting from the node and optional position modules left to furthest end.
Electrical power must be supplied via circular M12 4 pins type A male connector. The separation between 24VDC supply of the node and 24VDC of the outputs allows to turn off outputs leaving the node and eventual inputs operational.
PROFIBUS DP network connection is achieved via two circular male-female M12 5 pins type B connectors, connected in parallel; connector pinout is PROFIBUS Interconnection Technology compliant (Version 1.1 August 2001). Network node address is set via DIP-switch.
Internal termination resistance is on-board and can be enabled via DIP-switch as well.
There are two PROFIBUS DP node versions: they differ by number of outputs directly allocated to solenoid valve positions.
5330.64.32PB part number provides the first 32 out of 64 outputs, corresponding to less significant 4 bytes, are permanently allocated to solenoid valve positions, regardless how many they physically are and how many valves are installed. The remaining 32 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
5330.64.48PB part number provides the first 48 out of 64 outputs, corresponding to less significant 6 bytes, are permanently allocated to solenoid valve positions, regardless how many they physically are and how many valves are installed. The remaining 16 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
Two part-numbers have been provided to tailor configuration on your needs. 5330.64.48PB part number is recommended in case several solenoid valves must be handled, whilst ensuring room for future expansions. 5330.64.32PB part number is recommended in case increased flexibility is needed for digital outputs.

To better understand different possibilities offered, some configuration examples are made in the following pages.

Scheme / Overall dimensions and I/O layout

Technical characteristics

	Specifications	PROFIBUS DP
	Case	Reinforced technopolymer
Power supply	Power supply connection	M12 4 P male connector (IEC 60947-5-2)
	Power supply voltage	+24 VDC +/-10\%
	Node consumption (without inputs)	50 mA
	Power supply diagnosis	Green LED PWR / Green LED OUT
Network	Network connectors	2 M12 5 P connectors male-female type B
	Baud rate	9,6-19,2-93,75-187,5-500-1500-3000-6000-12000 Kbit/s
	Addresses possible numbers	From 1 to 99
	Max. node in net	100 (slave + master)
	Bus maximum recommended length	100 m at $12 \mathrm{Mbit} / \mathrm{s}-1200 \mathrm{~m}$ at 9,6 Kbit/s
	Bus diagnosis	Green LED + red LED
	Configuration file	Available from our web site http://www.pneumaxspa.com
	IP Rating	IP65 when assembled
	Temperature range	From $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Solenoid valves manifold

General - EtherNet/IP - EtherCAT ${ }^{\circledR}$ - PROFINET IO RT slave modules

5730.128.48PN, 5730.128.48EC e 5730.128.48EI nodes handle up to 128 inputs and outputs, both divided into 16 bytes. Output typologies include solenoid valves, digital outputs (e.g. 5130.08.M8) and analog outputs (e.g. 5130.2T.00). Connectable input types include digital inputs modules (e.g. 5230.08.M8), analog inputs modules (e.g. 5230.2 T .00) and Pt100 inputs modules (e.g. 5230.4P.02). Optional modules can be connected to the manifold in any order and configuration, provided that modules are installed starting from the node and optional position modules left to furthest end.
Electric power must be supplied via circular M12 4 pins male type A connector. The separation between 24VDC supply of the node and 24VDC of the outputs allows to turn off outputs leaving the node and eventual inputs operational.
The network connection is achieved via two circular female connectors (M12 4 pins, type D); these two circular connectors belong to two separate communication ports; hence they are not connected in parallel.
In 5730.128.48PN, 5730.128.48EC and 5730.128.48El part numbers the first 48 out of 128 outputs, corresponding to less significant 6 bytes, are permanently allocated to the solenoid valve positions, regardless how many they are and how many valves are installed. The remaining 80 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
When more than 64 inputs are needed and current coming from 24VDC rail is higher than 2.5 A , the use of additional power supply module (part number 5030.M12) is mandatory. 5030.M12 additional power supply module must be plugged-in upstream to the modules exceeding the above stated current limit, therefore close to the network node. On the other hand, whenever 64 outputs are used and further optional outputs modules are required, if total computed simultaneous current is higher than 2A, the $5030 . \mathrm{M} 12$ module is mandatory. 5030 .M12 module is plugged-in upstream to additional modules; it will supply electrical power to downstream modules. If 5030.M12 module has been already integrated to supply inputs modules, it is not necessary to install a second one, since it already supplies outputs modules.

Ordering code

5730.128.48EI
5730.128.48EC
5730.128.48PN

Scheme / Overall dimensions and I/O layout

Technical characteristics

	Case	Reinforced technopolymer
Power supply	Power supply connection	M12 4 P male connector (IEC 60947-5-2)
	Power supply voltage	+24 VDC +/- 10\%
	Node consumption (without inputs)	100 mA
	Power supply diagnosis	Green LED PWR / Green LED OUT
Network	Network connectors	2 M12 4 P female connectors type D (IEC 61076-2-101)
	Baud rate	$100 \mathrm{Mbit} / \mathrm{s}$
	Addresses possible numbers	As an IP address
	Maximum distance between 2 nodes	100 m
	Bus diagnosis	2 bicolor red / green LEDs + 4 LEDs for link \& activity
	Configuration file	Available from our web site http://www.pneumaxspa.com
	IP Rating	IP65 when assembled
	Temperature range	From $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

General - IO-Link slave modules

IO-Link node handles up to 64 inputs and outputs, both divided into 8 bytes. Output typologies include solenoid valves, digital outputs (e.g. 5130.08.M8) and analog outputs (e.g. 5130.2T.00). Connectable inputs typologies include digital inputs modules (e.g. 5230.08.M8), analog input modules (e.g. 5230.2T.00), and Pt100 inputs modules (e.g. 5230.4P.02). Optional modules can be connected to the manifold in any order and configuration, provided that modules are installed starting from the node and optional position modules left to furthest end.
Electrical power and connection to IO-Link Master come through male circular connector M12, 5 poles, type A, "CLASS B" according to IO-Link specifications. L+/L- electrical power allows to supply the node while P24/N24 electrical power allows to supply inputs and outputs modules, including solenoid valves, connected to the manifold. L+/L- and P24/ N24 power supplies are galvanically isolated into the IO-Link node.
IO-Link node exists in two versions: they differ by number of outputs directly allocated to solenoid valve positions. 5830.64.32IK part number provides the first 32 out of 64 outputs, corresponding to less significant 4 bytes, are permanently allocated to solenoid valve positions, regardless how many they physically are and how many valves are installed. The remaining 32 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
5830.64.48IK part number provides the first 48 out of 64 outputs, corresponding to less significant 6 bytes, are permanently allocated to solenoid valve positions, regardless how many they physically are and how many valves are installed. The remaining 16 outputs can be used to handle optional output modules. Bytes allocation to optional modules is done automatically.
Two part-numbers have been provided to tailor configuration on your needs. 5830.64 .48 IK part number is recommended in case several solenoid valves must be handled, whilst ensuring room for future expansions. 5830.64.32IK part number is recommended in case increased flexibility is needed for digital outputs.

Scheme / Overall dimensions and I/O layout

Technical characteristics

	Specifications	IO-Link Specification v1.1
	Case	Reinforced technopolymer
Outputs	PNP equivalent outputs	+24 VDC +/-10\%
	Maximum output number	64
	Maximum output simultaneously actuated	64
Network	Network connectors	Class B port
	Communication speed	COM2
	Maximum distance from Master	20 m
	Bus diagnosis	1 green and 1 red LED di stato for status
	Vendor ID / Device ID	1257 (hex 0x04E9) / 3000 (hex 0x0BB8)
	Configurations file IODD	Available from our web site http://www.pneumaxspa.com
	IP Rating	IP65 when assembled
	Temperature range	From $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Solenoid valves manifold
Series 3000

General - 8 M8 digital inputs module

M8 digital inputs module provides 8 M8, 3 pins, female connectors.
Inputs have PNP logic, 24VDC $\pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc...) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).
Inputs module power supply is provided by 24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by module 5030.M12, in case it were installed upstream of the inputs module.
Maximum overall available current for all 8 inputs on 24 VDC rail is 300 mA , since every module is equipped with an auto-resettable fuse with 300 mA threshold, thus, in case of overload or short circuit, 24 VDC rail is interrupted and, as a consequence, all 8 inputs 24 VDC is turned off along with green PWR LED. Other eventually connected inputs modules stays operational. Removing fault cause, green PWR LED gets back in on status and module becomes operational again.
The M8 digital inputs module takes up 8 input bits of the serial node installed on the manifold.

Scheme / Overall dimensions and I/O layout

M8 3P female connector

General - 8 M12 digital inputs module

Ordering code

M12 digital inputs module provides 4 M12, 5 pins, female connectors.
Inputs have PNP logic, 24VDC $\pm 10 \%$.
Every connector takes two independent input channels.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc...) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).
Inputs module power supply is provided by 24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by module 5030.M12, in case it were installed upstream of the inputs module.
Maximum overall available current for all 4 connectors on 24 VDC rail is 300 mA , since every module is equipped with an auto-resettable fuse with 300 mA threshold, thus, in case of overload or short circuit, 24VDC rail is interrupted and as a consequence all inputs 24VDC is turned off along with green PWR LED. Other eventually connected inputs modules remains operational. Removing fault cause, green PWR LED gets back in on status and module becomes operational again.
The M12 digital inputs module takes up 8 input bits of the serial node installed on the manifold.
5230.08.M12

Scheme / Overall dimensions and I/O layout

M12A 5P FEMALE

PIN	DESCRIPTION
1	+24 VDC (INPUTS)
2	INPUT B
3	GND
4	INPUT A
5	NC

General - 8 M8 digital outputs module
Module has 8 M8 female connectors.
Outputs have PNP logic, $24 \mathrm{VDC} \pm 10 \%$.

Ordering code

Maximum available current per output is 100 mA .
Electric power on outputs module is supplied by pin 4 of the M12 power connector on the network node or by the expansion module (5030.M12 part number). Power supply presence is displayed by "PWR OUT" green LED light-on. The module takes up 8 outputs (8 bits of the output bytes) of the serial node.

Scheme / Overall dimensions and I/O layout

M8 3P female connector
PIN
$\mathbf{1}$
3

General - 8 M12 digital outputs module

Ordering code

Module has 4 M12 female connectors.
Outputs have PNP logic, 24VDC $\pm 10 \%$.
Maximum available current per output is 100 mA .
Electric power on outputs module is supplied by pin 4 of the M12 power connector on the network node or by the expansion module (5030.M12 part number). Power supply presence is displayed by "PWR OUT" green LED light-on. The module takes up 8 outputs (8 bits of the output bytes) of the serial node.

5130.08.M12

Scheme / Overall dimensions and I/O layout

General - 32 digital inputs SUB-D 37 pins module

The module provides a SUB-D 37 pins female connector.
Inputs have PNP logic, 24VDC $\pm 10 \%$.
It is possible to connect 2 wires devices (e.g. switches, magnetic limit switches, pressure switches, etc...) as well as 3 wires devices (e.g. proximity sensors, photocells, electronic magnetic limit switches, etc.).
Inputs module power supply is provided by 24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by module 5030.M12, in case it were installed upstream of the inputs module.
Maximum overall available current for all 32 inputs on 24 VDC rail is 1 A , since every module is equipped with an auto-resettable fuse with 1 A threshold, thus, in case of overload or short circuit, 24 VDC rail is interrupted and as
a consequence all 32 inputs 24VDC is turned off along with green PWR LED. Other eventually connected inputs modules stays operational. Removing fault cause, green PWR LED gets back in on status and module becomes operational again.
The module takes up 32 bits on the input data of the serial node installed.

Scheme / Overall dimensions and I/O layout

General - 32 digital outputs SUB-D 37 pins module

Module has a SUB-D 37 pins female connector.
Outputs have PNP logic, $24 \mathrm{VDC} \pm 10 \%$.
Maximum available current per output is 100 mA .
Electric power on outputs module is supplied by pin 4 of the M12 power connector on the network node or by the expansion module (5030.M12 part number). Power supply presence is displayed by "PWR OUT" green LED light-on.
The module takes up 32 outputs (32 bits of the output bytes) of the serial node.

Ordering code

5130.32.37P

Scheme / Overall dimensions and I/O layout

General - M8 analogue inputs modules

M8 analog inputs module digitizes analog signals and transfer acquired data to field bus, via network node.
Each input is sampled at 12 bits and transmitted, for convenience, at 16 bit, whose less significant bits padded to 0 . Therefore, each digitized signal takes 16 inputs (2 bytes) of the serial node. During the ordering process, it is necessary to verify that the serial node has enough free inputs.
Following table reports available models:

CODE	SIGNAL	ANALOGUE INPUTS	MAXIMUM CURRENT ON +24 VDC RAIL	OCCUPIED INPUTS
5230.2T.00	VOLTAGE 0-10V	2	300 mA	32 (4 Byte)
5230.2T.01	VOLTAGE 0-5V	2	300 mA	32 (4 Byte)
5230.4T.00	VOLTAGE 0-10V	4	750 mA	64 (8 Byte)
5230.4T.01	VOLTAGE 0-5V	4	750 mA	64 (8 Byte)
5230.2C.00	CURRENT 4-20mA	2	300 mA	32 (4 Byte)
5230.2C. 01	CURRENT 0-20mA	2	300 mA	32 (4 Byte)
5230.4C.00	CURRENT $4-20 \mathrm{~mA}$	4	750 mA	64 (8 Byte)
5230.4C. 01	CURRENT $0-20 \mathrm{~mA}$	4	750 mA	64 (8 Byte)

Power supply of the M8 analog inputs module is provided by 24 VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by module 5030.M12, in case it were installed upstream of the inputs module. Modules provide M8 3 pins female connectors and a diagnostic LED for every analog input. The LED indicates signal presence (green) or signal out of range (red).
Maximum available current for each channel on 24 VDC rail (pin 1) is reported in the table. Each module provides an internal resettable fuse, which cuts 24VDC power supply to every M8 connector and turning off green PWR LED when thresholds are exceeded. Inputs of other eventual modules connected to the node continue to operate uninterrupted. By removing the cause of the threshold overrun, green PWR LED gets back in ON status and the module becomes operational again.

Ordering code

5230._ _. 0

Scheme / Overall dimensions and I/O layout

General - M8 analogue outputs modules

M8 analog outputs module converts output data, received from field bus via network node, into analog signal. Each analog output has a resolution of 12 bits, processed from 16 outputs (2 bytes), ignoring 4 less significant bits. During the ordering process, it is necessary to verify that the serial node has enough free outputs.
Different models are available:

CODE	SIGNAL	ANALOGUE OUTPUTS	MAXIMUM CURRENT ON + 24 VDC RAIL	OCCUPIED OUTPUTS
5130.2 T .00	VOLTAGE 0-10V	2	1 A	32 (4 Byte)
5130.2T. 01	VOLTAGE 0-5V	2	1 A	32 (4 Byte)
5130.4 T .00	VOLTAGE 0-10V	4	2 A (1A for each pair of channel)	64 (8 Byte)
5130.4T. 01	VOLTAGE 0-5V	4	2 A (1A for each pair of channel)	64 (8 Byte)
5130.2C.00	CURRENT 4-20mA	2	1 A	32 (4 Byte)
5130.2C. 01	CURRENT $0-20 \mathrm{~mA}$	2	1 A	32 (4 Byte)
5130.4C. 00	CURRENT $4-20 \mathrm{~mA}$	4	2 A (1A for each pair of channel)	64 (8 Byte)
5130.4C. 01	CURRENT $0-20 \mathrm{~mA}$	4	2 A (1A for each pair of channel)	64 (8 Byte)

Power supply of the M8 analog outputs module is provided by 24VDC power input on the serial system (type A, 4 pin M12 power connector, pin 4) or by module 5030.M12, in case it were installed upstream of the outputs module. Modules provide M8 3 pins female connectors and a diagnostic LED for every analog input. The LED indicates signal presence (green) or overload fault (red).
Maximum available current for each channel on 24VDC rail (pin 1) is reported in the table. Each module provides an internal resettable fuse, which cuts 24VDC power supply to every M8 connector and turning off green PWR LED when thresholds are exceeded. Outputs of other eventual modules connected to the node continue to operate uninterrupted. By removing the cause of the threshold overrun, green PWR LED gets back in ON status and the module becomes operational again.

Ordering code

5130._ _.

Scheme / Overall dimensions and I/O layout

General - Pt100 inputs modules

Pt100 inputs module digitizes signals from Pt100 sensors and transfers acquired data to field bus, via network node. Each input is sampled at 12 bits and transmitted, for convenience, at 16 bits, whose less significant bits padded to 0 . Therefore, each digitized signal takes 16 inputs (2 bytes) of the serial node. During the ordering process, it is necessary to verify that the serial node has enough free inputs.

Ordering code

5230._ _. 0

It is possible to connect two, three or four wire sensors.
Temperature range is from $-100^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$.
When sensor is not connected, it is returned a value corresponding to $-100^{\circ} \mathrm{C}$.
Temperature can be obtained from node read value (in points) using this formula:

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\left(\frac{\text { Points }}{4095} \times 400\right)-100
$$

Following table reports available models:

CODE	MODEL	INPUTS NUMBER	OCCUPIED INPUTS
$5230.2 P .00$	Pt100 2 wires	2	32 (4 Byte)
$5230.2 P .01$	Pt100 3 wires	2	32 (4 Byte)
$5230.2 P .02$	Pt100 4 wires	2	32 (4 Byte)
5230.4 P .00	Pt100 2 wires	4	$64(8$ Byte)
5230.4 P .01	Pt100 3 wires	4	64 (8 Byte)
5230.4 P .02	Pt100 4 wires	4	64 (8 Byte)

Module provides M8 4 pins female connectors and a diagnostic LED for every input.
The LED indicates the presence of the PT100 sensor or the overcoming of set temperature threshold.
Inputs module power supply is provided by 24VDC power input on the serial system (type A, 4 pin M12 power connector, pin 1) or by module 5030.M12, in case it were installed upstream of the inputs module.
Presence of power supply +24 VDC is indicated by a PWR green LED.

Scheme / Overall dimensions and I/O layout

General - Additional power supply module

Additional power supply module 5030.M12 supplies additional electric power for downstream optional modules, where "downstream" means farther from serial node.
Electric connection of the module to external power supply unit occurs via an M12 4 pins type A male connector. M12 connector has two different pins to power up inputs (pin 1) and outputs (pin 4). Presence of each power supply rail is indicated by corresponding green LED.

Ordering code

5030.M12

Scheme / Overall dimensions and I/O layout

General - Optional position module

Optional position module is employed to protect manifold connections where no module has yet been installed. Optional position modules must be installed at the left end of the system, that is downstream the other modules.

Ordering code
5030.T00

Configuration example

The code 5030.T00 can be replaced by any of the modules presented in the previous pages, as long as the availability of the necessary inputs or outputs is checked on the node.

Signal management
64 INPUT + 64 OUTPUT serial systems - 32 fixed OUTPUT (Ex. PROFIBUS DP and CANopen®)

64 INPUT + 64 OUTPUT serial systems - 48 fixed OUTPUT (Ex. PROFIBUS DP and CANopen ${ }^{\circledR}$)

128 INPUT + 128 OUTPUT serial systems - 48 fixed OUTPUT (Ex. EtherNet/IP - EtherCAT ${ }^{\circledR}$ - PROFINET IO RT/IRT)

