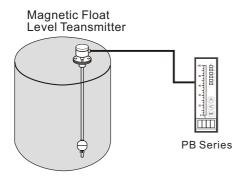
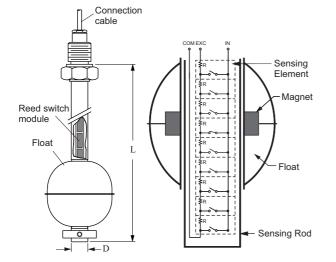


Authorized Distributor


Magnetic Float Level Transmitter

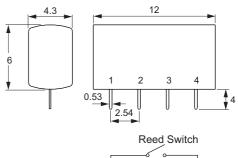
WORKING PRINCIPLE


The "Magnet Float Level Transmitter" is composed of a float and sensing rod (shown below). As the float is raised or lowered by the liquid level, the sensing rod will induce a resistance output, which is directly proportional to the liquid level. The Magnet Float Level Transmitter is a sturdy, reliable and durable device that is applicable to most industries.

APPLICATIONS

Waste water treatment Turn-key facilities Electric power plants Shipping vessels Hydraulic facilities Chemical industrial equipment Petrochemical industries Hot coal boiler e.g. diesel engine generators, motor oil meters, oil material storage tanks

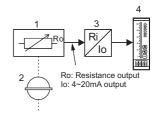
CONSTRUCTION



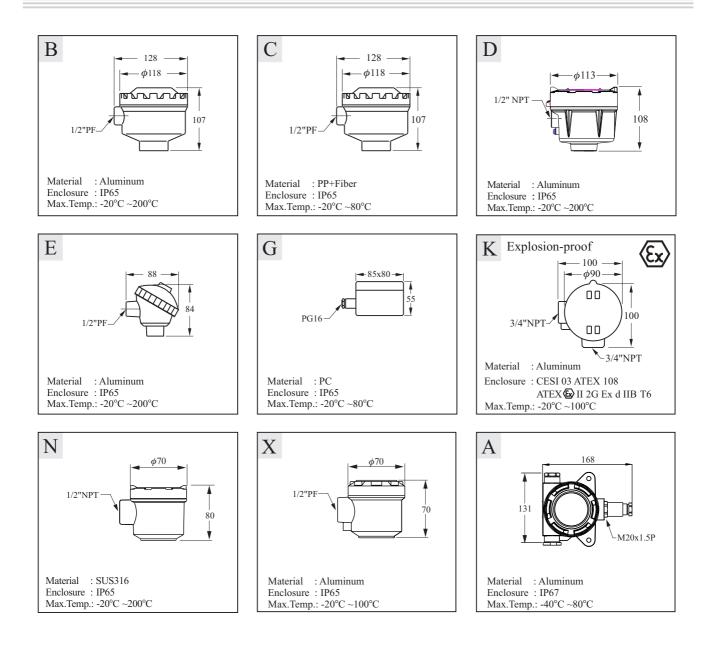
FEATURES

- Optional TAB-2100 (see p4) to produce a 0/4~20mA signal
- Optional PB series bargraphic display scaling panel meter for level control and display
- Sensing elements are protected with a plastic package for safety in use and transport.
- High performance and reliable electric circuit modular design (fig.2)
- Explosion Proof certificate available
- Marine certificate: ABS, BV, LR, DNV.GL, CR available

Fig.1 Sensing Element



Δ


Sensing Element Size

SCHEMATIC DIAGRAMS

- 1. Sensing Rod
- 2. Float
- 3. Transducer
- 4. Display Unit

HOUSING DIMENSIONS

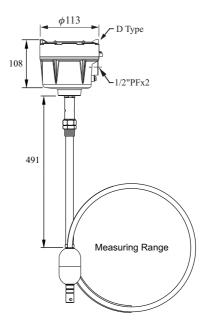
FLOAT SPECIFICATIONS

Dimension	Туре	AxBxC(mm)	S.G.	Max. Pressure (kg/cm²)	Material	Max. Temp. (°C)	Approx. Weight (g)
	S3	45x55x15	0.65	12	SUS 316	200°C	37.6
	S6	75x108x19	0.5	10	SUS 304 SUS 316	200°C	165
A	S4	52x52x15	0.55	30	SUS 316	200°C	33.4
	S5	75x73x19	0.61	30	SUS 304 SUS 316	200°C	105
B I I I I	S8	100x100x20	0.5	15	SUS 304 SUS 316	200°C	249.7
C→ ←	S9	150x150x30	0.45	15	SUS 304	200°C	534
$ \begin{array}{c c} \leftarrow A \rightarrow \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$	P3	48x45x18.5	0.6	5	PP	80°C	35.5
	F4	48x62x18	0.75	5	PVDF	120°C	65.3
	R6	72x118x28	0.62	22.5	SUS316	200°C	193
	RF	72x118x28	0.95	22.5	SUS316	200°C	296
	Р9	74x45x28	0.64	5	PP	80°C	111
	PI	74x45x28	0.96	5	PP	80°C	165

TRANSDUCER

MODEL: TAB-2110 (TAXAA1X) Transducer

Power Supply : 12~36Vdc Output Current : Loop power 4~20mA Load Resistance : RL(Max)=50(Vs-12) Ambient Temperature : -40~80°C Ambient Humidity : 0~80% RH Accuracy : ±0.1%(25°C) : 0.01%F.S./°C Temperature Effect Adjustment Range : Span Adjustment 20% FS Zero Adjustment 5% FS

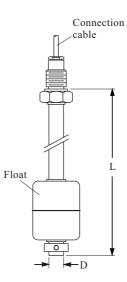


2-Wire (TAB-2110)

FLEXIBLE MODEL DIGITALE DISPLAY TYPE / ECONOMICAL TYPE

MODEL: Flexible Magnetic Float Level Transmitter (Economical type)

Power Supply	: 12~36Vdc
Measuring range	: 3000mm~30000mm
Analog output	: 4~20mA loop power
Resolution	: 12.7mm
Load impedance	: RL (Max.) = 50 (Vs-12)
Accuracy	: ±0.1%(25°C)
Ambient temp.	: -40~80°C
Operating temp.	: -40~80°C
IP rating	: IP65



FEATURE

- Cover protection for reed module, to prevent any damage during transportation.
- Not effect by temperature and pressure variaion.
- Easy to record and set up with digital display.
- Easy to install, need not to do periodic calibration and maintenance.

ECONOMICAL

• SPECIFICATIONS

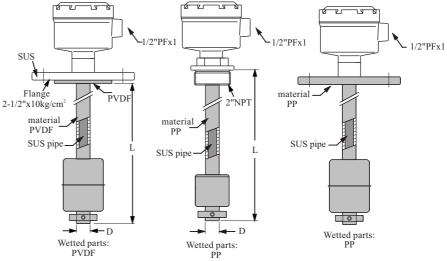
Connection Cable: Silicon cable 3C × 1M	Operating Temp.: PP tube	-10 °C ~ 80 °C
Output: 3-wire resistance output	PVDF tube	-20 °C ~ 120 °C
Total Resistance: $1M\Omega$ (Max.)	SUS tube	-20 °C ~ 120 °C

Order No.	Connection	Tube size & Material (D)		Float type & Material		Suitable S.G.	Measuring Range
FG _ -AR4	3/8"PF	<i>φ</i> 14	SUS 304 SUS 316	S3: φ45x55 S4: φ52x52	SUS 316 SUS 316	>0.65 >0.55	FGAMax.6M FGBMax.6M
		φ17.2	SUS 304	S5: <i>φ</i> 75x73	SUS 304 SUS 316	>0.61 >0.5	FGAMax.6M FGBMax.6M
FG□-AR7 3/8"PF	3/0 FF			S6: <i>φ</i> 75x108	SUS 304 SUS 316		
FGB-CR5P3	3/4"PF	φ17.2	PP	P3: <i>ф</i> 48x45	PP	>0.6	FGBMax.6M
FGB-CR6F4	3/4"PF	<i>ф</i> 16	PVDF	F4: <i>φ</i> 48x62	PVDF	>0.75	FGBMax.6M

STANDARD

SPECIFICATION

Terminal Housing: Aluminum, IP65 Output:4 ~ 20mA, 2-wire Total resistance : $1M\Omega$ (Max.) Operating Temperature: $-20 \sim 120 \degree C$ Ambient Temperature: $0 \sim 70 \degree C$


Order No.	Connection	Tube siz	e & Material (D)	Float type &	Material	Suitable S.G.	Measuring Range
FG_BFQ4	2"PT	<i>ф</i> 14	SUS 316 SUS 304	S3: φ45x55 S4: φ52x52	SUS 316 SUS 316	>0.65 >0.55	FGC/DMax.6M
FG_BGN4	2-1/2"x10kg/cm ²	<i>φ</i> 14	SUS 316 SUS 304	S3: φ45x55 S4: φ52x52	SUS 316 SUS 316	>0.65 >0.55	FGC/DMax.6M
FGDBHN7	3"x10kg/cm ²	φ17.2	SUS 304	S5: <i>φ</i> 75x73	SUS 304 SUS 316	>0.61 >0.5	FGDMax.6M
	FGDBHN7 5 XTOKg/CIII			S6: <i>φ</i> 75x108	SUS 304 SUS 316		
FGDBIQ7	4"PT	<i>φ</i> 17.2	SUS 304	S8: <i>φ</i> 100x100	SUS 304 SUS 316	>0.5	FGDMax.6M
FGDBKN8 FGDBKN9	6"x10kg/cm ²	φ21.7 φ27.2	SUS 304	S9: <i>φ</i> 150x150	SUS 304	>0.45	FGDMax.12M

★ B type housing, dimension see page 2.

ANTI-CORROSIVE

★ C type housing, dimension see page 2.

• SPECIFICATIONS


Terminal Housing: PP +Fiber, IP65 **Output:** 4 ~ 20mA, 2-wire **Ambient Temperature:** 0~70 °C Operating Temperature: PP jacket tube-10 ~ 80 °C PVDF jacket tube -20 ~ 120 °C Total resistance: $1M\Omega$ (Max.)

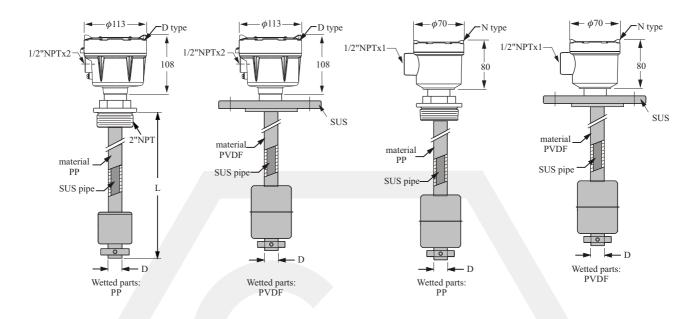
Order No.	Connecting		& Material D)	Float type & N	laterial	Suitable S.G.	Measuring Range
FGDCFQ5P3	2"PT	<i>φ</i> 17.2	PP	P3: <i>φ</i> 48x45	PP	>0.55	FGDMax.6M
FGDCFQ6F4	2"PT	ϕ 16	PVDF	F4: <i>φ</i> 48x62	PVDF	>0.75	FGDMax.6M
FGDCGN5P3	2-1/2"x10kg/cm ²	<i>φ</i> 17.2	PP	P3: <i>φ</i> 48x45	PP	>0.6	FGDMax.6M
FGDCGN6F4	2-1/2"x10kg/cm ²	<i>ф</i> 16	PVDF	F4: <i>φ</i> 48x62	PVDF	>0.75	FGDMax.6M

Every unit is protected by a PP or PVDF flange to prevent the sensing rod from corrosion.

*K type ATEX Explosion proof enclosure can be selected (see p2).

• SPECIFICATION

Terminal Housing: K type Aluminum, ATEX Ex d IIB T6	Operating Temperature: PP tube -10 ~ 80°C
Output: 4 ~ 20mA, 2-wire	PVDF tube -20 ~ 120°C
Ambient Temperature: 0 ~ 70 °C	SUS tube -20 ~ 120°C
Total resistance: $1M\Omega$ (Max.)	


Order No.	Connection		e & Material (D)	Float type &	Material	Suitable S.G.	Measuring Range
FG KFQ4	2"PT	<i>φ</i> 14	SUS 304	S4: φ52x52	SUS 316	>0.55	FGA/BMax.6M FGC/DMax.6M
FG KGN4	2-1/2"x10kg/cm ²	<i>ф</i> 14	SUS 304	S4: φ52x52	SUS 316	>0.55	FGA/BMax.6M FGC/DMax.6M
FGDKHN7	3"x10kg/cm ²	φ17.2	SUS 304	S6: <i>φ</i> 75x108	SUS 304 SUS 316	>0.5	FGDMax.6M
FGDKIQ4	4"PT	φ17.2	SUS 304	S8: <i>φ</i> 100x100	SUS 304 SUS 316	>0.5	FGDMax.6M
FGDKFQ5P3	2"PT	φ17.2	PP	P3: <i>φ</i> 48x45	PP	>0.6	FGDMax.6M
FGDKFQ6F4	2"PT	ϕ 16	PVDF	F4: <i>ф</i> 48x62	PVDF	>0.75	FGDMax.6M
FGDKGN5P3	2-1/2"x10kg/cm ²	φ17.2	PP	P3: <i>φ</i> 48x45	PP	>0.6	FGDMax.6M
FGDKGN6F4	2-1/2"x10kg/cm ²	<i>ф</i> 16	PVDF	F4: <i>ф</i> 48x62	PVDF	>0.75	FGDMax.6M

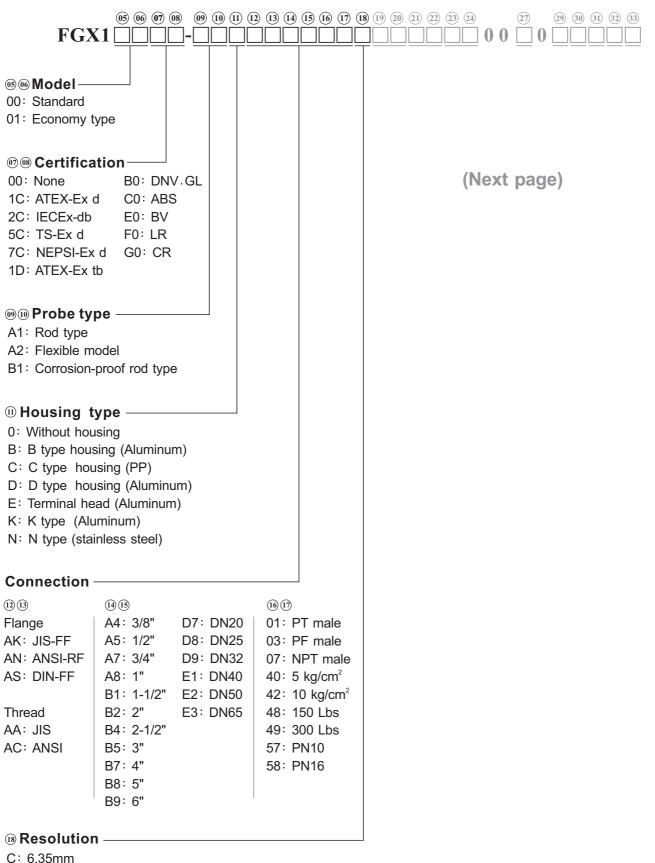
NEPSI Ex d IIC T3~T6 Gb ATEX @II 2 G Ex d IIB T3 or T4 or T5 or T6 Gb @ II 2 D Ex tb IIIC T200°C or T135°C or T100°C or T85°C Db IECEX Ex db IIB T3 or T4 or T5 or T6 Gb Ex tb IIIC T200°C or T135°C or T100°C or T85°C Db

ENCLOSURE EXPLOSION PROOF

★ D or N type housing can be selected.

SPECIFICATIONS

Terminal Housing: D type Aluminum
N type SUS
Output: 4 ~ 20mA, 2-wire
Ambientt: 0~70 °C


Total Resistance: 1MΩ (Max.) Operation Temperature: PP tube -10 ~ 80 °C PVDF tube -20 ~ 120 °C

MODEL NO. FG7	Connecting		size (D) & aterial	Float type &	Material	Suitable S.G.	Measuring Range
FG7DFQ4	2"PT	φ14	SUS 316	S3: <i>φ</i> 45x55	SUS 316	>0.65	FG7Max.3M
FG7DGN4	2-1/2"x10kg/cm ²	<i>ф</i> 14	SUS 316	S3:	SUS 316	>0.65	FG7Max.3M
FG7DDHN7	3"x10kg/cm ²	φ17.2	SUS 304	S5:	SUS 304 SUS 316	>0.61	FG7Max.6M
FG7DDIQ4	4"PT	φ17.2	SUS 304	S8: <i>φ</i> 100x100	SUS 304 SUS 316	>0.5	FG7Max.6M
FG7DDKN8 FG7DDKN9 FG7DDKN8 FG7DDKN9	6"x10kg/cm ²	φ21.7 φ27.2	SUS 304	S9: <i>ф</i> 150x150	SUS 304	>0.45	FG7Max.6M
FG7DDFQ5P3	2"PT	<i>φ</i> 17.2	PP	P3: <i>φ</i> 48x45	PP	>0.6	FG7Max.6M
FG7DDFQ6F4	2"PT	<i>ф</i> 16	PVDF	F4: <i>φ</i> 48x62	PVDF	>0.75	FG7Max.6M
FG7DDGN5P3	2-1/2"x10kg/cm ²	<i>φ</i> 17.2	PP	P3: <i>φ</i> 48x45	PP	>0.6	FG7Max.6M
FG7DDGN6F4	2-1/2"x10kg/cm ²	<i>ф</i> 16	PVDF	F4: <i>ф</i> 48x62	PVDF	>0.75	FG7Max.6M

MODEL NUMBER / ORDER CODE COMPARISON TABLE

Model Number	Order Code
FG⊡-AR4	FGX10100-A10AAA403CMA2B
FG⊡-AR7	FGX10100-A10AAA403CMA2D
FGB-CR5P3	FGX10100-B10AAA703E182D
FGB-CR6F4	FGX10100-AAA703E242C
FG⊡BFQ4	FGX10000-A1BAAB201CMA2B
FG⊡BGN4	FGX10000-A1BAKB442
FGBBHN7	FGX10000-A1BAKB542EMA2D
FGBBIQ7	FGX10000-A1BAKB701EMA2D
FGBBKN8	FGX10000-A1BAKB942EMA3A
FGBBKN9	FGX10000-A1BAKB942EMA3B
FGDCFQ5P3	FGX10000-B1CAAB201E182DP3
FGDCFQ6F4	FGX10000-B1CAAB201E242CF4
FGDCGN5P3	FGX10000-B1CAKB442E182DP3
FGDCGN6F4	FGX10000-B1CAKB442E242CF4
FG⊡KFQ4	FGX10000-A1KAAB201CMA2B
FG⊡KGN4	FGX10000-A1KAKB442CMA2B
FGDKHN7	FGX10000-A1KAKB542EMA2D
FGDKIQ4	FGX10000-A1KAAB701EMA2D
FGDKFQ5P3	FGX10000-A1KAAB201E182DP3
FGDKFQ6F4	FGX10000-A1KAAB201E242CF4
FGDKGN5P3	FGX10000-A1KAKB442E182DP3
FGDKGN6F4	FGX10000-A1KAKB442E242CF4
FG7⊡DFQ4	FGX100 -A1DAAB201 CMB2BS3
FG7⊡DGN4	FGX100 - A1DAKB442 CMB2BS3
FG7DDHN7	FGX100 -A1DAKB542 EMA2DS5
FG7DDIQ4	FGX100 - A1DAAB707 EMA2DS8
FG7DDKN8	FGX100 -A1DAKB942EMA3AS9
FG7DDKN9	FGX100 -A1DAKB942EMA3BS9
FG7DDFQ5P3	FGX100 -A1DAAB207E182DP3
FG7DDFQ6F4	FGX100 -A1DAAB207E242CF4
FG7DDGN5P3	FGX100 -A1DAKB442E182DP3
FG7DDGN6F4	FGX100 - A1DAKB442E242CF4

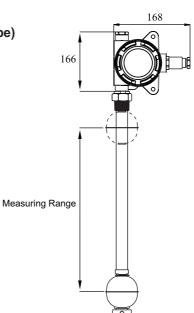
ORDER INFORMATION

E: 12.7mm

FGX1			
 (9) 20 Probe material — MA: SUS 304 MB: SUS 316 18: PP 24: PVDF 			
O O Duck a diamatan			
(1) (2) Probe diameter —			
	φ17.2mm		
-	φ21.7mm		
	ϕ 27.2mm		
	C PVDF material when meas ly 12.7mm resolution is available.		
3 4 Float			
00: None			
S3: 45*55*15 E>0.65	S9: 150*150*30 E>0.45	P3: 48*45*18.5 E>0.6	
S4: 52*52*15 E>0.55	F4: 48*62*18 E>0.75	P9: 74*45*28 E>0.64	
S5: 75*73*20.5 E>0.65	R6: 72*118*28 E>0.62	PI: 74*45*28 E>0.96	
S6: 75*108*20 E>0.5	RF: 72*118*28 E>0.95		
S8: 100*100*20 E>0.5			
In Analog output			
B: 4~20mA	1		
E: 3-wire resistance output			
⁽³⁾ Material and surface	roughness ———		
0: None			
A: Ra < 0.3			
B: Ra < 0.5			
C: Ra < 0.8			
3033333 Length			
eeeeee Lengin			,

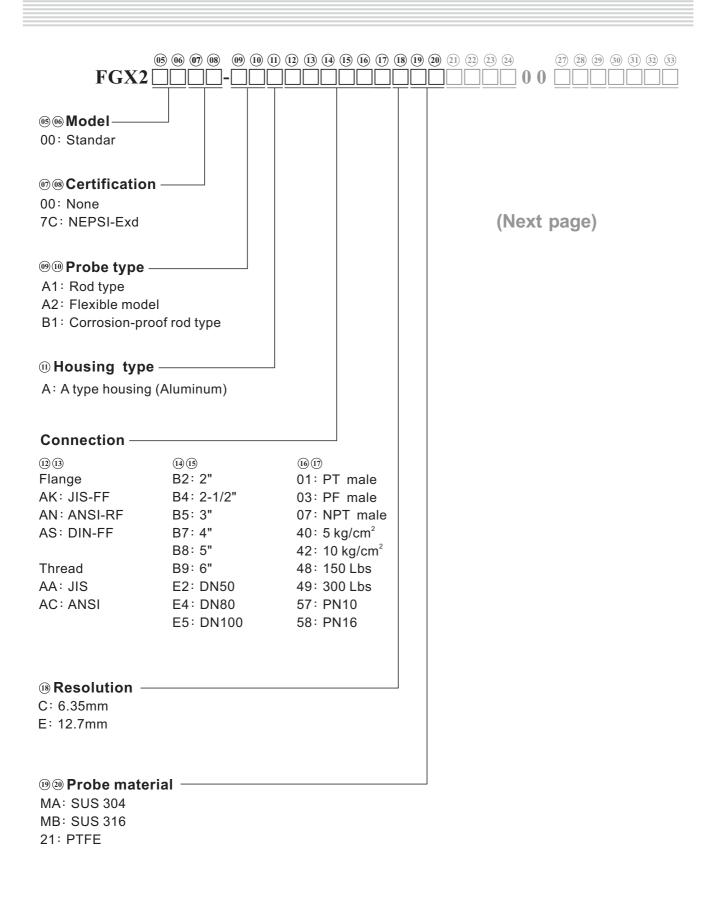
Code	Probe Length
0150~A300	150~30000mm

DISPLAY MODEL



FEATURE

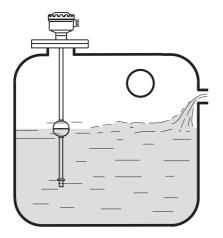
- Cover protection for reed module, to prevent any damage during transportation.
- Not effect by temperature and pressure variaion.
- Easy to record and set up with digital display.
- Easy to install, need not to do periodic calibration and maintenance.

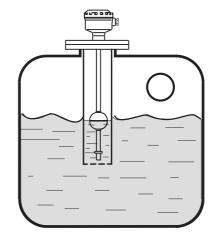

EXPLOSION PROOF DISPLAY MODEL

MODEL: Explosion proof Magnetic Float Level Transmitter (Digital display type) Power Supply: 12~36 Vdc Measuring range: 150mm~3000mm Analog output: 4~20mA, 2Wire(Loop power) Resolution: 6.35mm / 12.7mm Digital communication: HART/RS-485 Ambient temp.: -40~85°C Operating temp.: -40~125°C IP rating: IP67

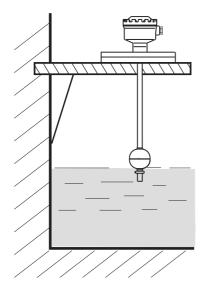
NEPSI PROOF No.GYB16.1444X Ex d IIC T3~T6 Gb

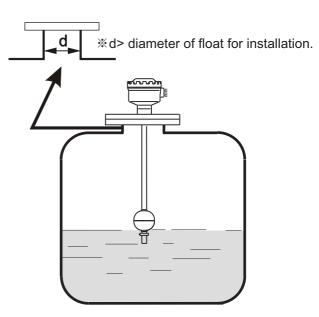
ORDER INFORMATION




	~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
●5 ●6 07 FGX2 □□□			$\begin{array}{c} (23) \\ (24) \\ (2$	27 28 29 30 31 32 33
ⓐ ② Probe diameter —				
2A: <i>ϕ</i> 12.7mm				
2B: <i>ϕ</i> 14.0mm				
2C: <i>ϕ</i> 16.0mm				
2D: <i>φ</i> 17.2mm				
3B: <i>ϕ</i> 27.2mm				
32 Float				
S3: 45*55*15 E>0.65	S8: 100*100*20 E>0.5	P3: 48*45*18.5	E>0.6	
S4: 52*52*15 E>0.55	S9: 150*150*30 E>0.45	P9: 74*45*28 E	>0.64	
S5: 75*73*20.5 E>0.65	F4: 48*62*18 E>0.75			
S6: 75*108*20 E>0.5	R6: 72*118*28 E>0.62			
② Analog output ———				
B: 4~20mA				
C: 20~4mA				
Bigital output				
0: None				
B: RS-485				
C: RS485 +PT100				
E: HART				
F: HART 7.3 +PT100				
Material and surface	roughness			
0: None				
A: Ra < 0.3				
B: Ra < 0.5				
C: Ra < 0.8				
30313233 Length				

Code	Probe Length
0150~A300	150~30000mm


INSTALLATION


- The float level transmitter should be mounted far away from the inlet, Any rigorous liquid turbulence will produce error output signals.
- A pipe shield or an equivalent device can help normalize the indicator actuation especially when an agitator is present.

- Another useful alternative is an L type support frame when the level indicator is mounted in concrete wall tank as figure below.
- It is recommended to select the standpipe with diameter (d) larger than the float for the installation process.

บริษัท ฟลูเทค จำกัด FLU-TECH CO.,LTD

845/3-4 หมู่ 3 ถ.เทพารักษ์ ต.เทพารักษ์ อ.เมือง จ.สมุทรปราการ 10270

845/3-4 Thepharak RD., T.Thepharak, A.Muang, Samutprakarn 10270 THAILAND Tel. 0 2384 6060, Fax 0 2384 5701, Email : pneumatic@flutech.co.th, www.flutech.co.th